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ABSTRACT Short interspersed nuclear elements (SINEs) are RNA polymerase III
(RNAPIII)-transcribed, retrotransposable noncoding RNA (ncRNA) elements ubiqui-
tously spread throughout mammalian genomes. While normally silenced in healthy
somatic tissue, SINEs can be induced during infection with DNA viruses, including
the model murine gammaherpesvirus 68 (MHV68). Here, we explored the mecha-
nisms underlying MHV68 activation of SINE ncRNAs. We demonstrate that lytic
MHV68 infection of B cells, macrophages, and fibroblasts leads to robust activation
of the B2 family of SINEs in a cell-autonomous manner. B2 ncRNA induction requires
neither host innate immune signaling factors nor involvement of the RNAPIII master
regulator Maf1. However, we identified MHV68 ORF36, the conserved herpesviral ki-
nase, as playing a key role in B2 induction during lytic infection. SINE activation is
linked to ORF36 kinase activity and can also be induced by inhibition of histone
deacetylases 1 and 2 (HCAC 1/2), which is one of the known ORF36 functions. Col-
lectively, our data suggest that ORF36-mediated changes in chromatin modification
contribute to B2 activation during MHV68 infection and that this activity is con-
served in other herpesviral protein kinase homologs.

IMPORTANCE Viral infection dramatically changes the levels of many types of RNA
in a cell. In particular, certain oncogenic viruses activate expression of repetitive
genes called retrotransposons, which are normally silenced due to their ability to
copy and spread throughout the genome. Here, we established that infection with
the gammaherpesvirus MHV68 leads to a dramatic induction of a class of noncoding
retrotransposons called B2 SINEs in multiple cell types. We then explored how
MHV68 activates B2 SINEs, revealing a role for the conserved herpesviral protein ki-
nase ORF36. Both ORF36 kinase-dependent and kinase-independent functions con-
tribute to B2 induction, perhaps through ORF36 targeting of proteins involved in
controlling the accessibility of chromatin surrounding SINE loci. Understanding the
features underlying induction of these elements following MHV68 infection should
provide insight into core elements of SINE regulation, as well as disregulation of
SINE elements associated with disease.
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A large fraction (40 to 45%) of mammalian genomes are composed of sequences
derived from retrotransposable elements, which are capable of copying them-

selves (autonomous) or being copied (nonautonomous) and inserted semirandomly
back into the genome. Retrotransposons are ubiquitously spread throughout the
genome and are important components of genome architecture and chromatin re-
modeling (1–4). Among these, the short interspersed nuclear element (SINE) subfamily
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of retrotransposons makes up �12% of the genome and is transcribed by RNA
polymerase III (RNAPIII) to produce short, �300-bp noncoding RNAs (ncRNAs). SINEs are
evolutionarily derived from other common RNAPIII-transcribed genes, such as 7SL in
the case of the human Alu SINE and tRNA in the case of the mouse B2 SINE. SINE
ncRNAs are nonautonomous and co-opt the machinery encoded by the long inter-
spersed nuclear elements (LINEs) for reverse transcription and reintegration. SINEs may
act as functional enhancers and mobile RNA polymerase II promoters and are also
present as “embedded elements” in many mRNA transcripts, where they can influence
mRNA processing, localization, and decay (1, 5–7).

B2 SINE ncRNA transcription is RNAPIII dependent, requiring the transcription factor
complexes TFIIIC and TFIIIB. TFIIIC binds to the internal A and B boxes present within
type II RNAPIII promoters, such as those contained within B2 SINE and tRNA species.
This is followed by recruitment of TFIIIB, comprising BDP1, BRF1, and TBP, which help
position RNAPIII at the transcription start site. Absence of BRF1 abrogates transcription
from type I and type II RNAPIII promoters but does not affect transcription from type
III RNAPIII promoters, which utilize a Brf1 paralog, Brf2 (8). RNAPIII activity can be
broadly controlled by its master repressor Maf1, a phosphoprotein that binds BRF1 and
RNAPIII, thereby preventing TFIIIB assembly onto DNA and blocking the association of
the polymerase with TFIIIB that is already assembled at transcription start sites (9).
Phosphorylation of Maf1, for example, by mTORC1 (10), prevents Maf1-mediated
repression of RNAPIII, thereby potentiating an increase in transcription.

SINE expression is normally repressed due to the maintenance of repressive tri-
methylation of lysine 9 on histone H3 (H3K9me3) (11) and CpG methylation of DNA
(12). However, SINEs become derepressed under conditions of cellular stress, such as
chemical treatment and heat shock (13–15). SINEs from both humans and mice are also
induced during infection with a variety of DNA viruses, including herpes simplex virus
1 (HSV-1), adenovirus, minute virus of mice, simian virus 40 (SV40), and murine
gammaherpesvirus 68 (MHV68) (16–22). Several recent reports indicate that virus-
induced SINEs and other RNAPIII-transcribed ncRNAs interface with innate immune
pathways and thus may serve as signaling molecules during infection (23, 24). In
particular, B2 ncRNAs induced upon MHV68 infection potentiate NF-�B signaling, in
part through a pathway involving the mitochondrial antiviral signaling protein (MAVS),
and also boost viral gene expression (21, 25). Aberrant accumulation of Alu RNAs
contributes to age-related macular degeneration by inducing cytotoxic NLRP3 inflam-
masome activation (26–30) and can also induce epithelial-to-mesenchymal transition, a
hallmark of progression of several cancers (31). Additionally, SINEs induced during heat
shock can bind and inhibit RNA polymerase II transcription, indicating that these
ncRNAs may have a variety of functions during stress (15, 32).

MHV68 is a model gammaherpesvirus related to Kaposi’s sarcoma-associated her-
pesvirus (KSHV) and Epstein-Barr virus (EBV) and has been widely used to dissect
gammaherpesvirus biology and pathogenesis. A recent genome-wide mapping study
revealed that MHV68 infection of murine fibroblasts leads to activation of �30,000 B2
SINE loci, although the mechanism of B2 induction is unknown (22). Here, we show that
in addition to fibroblasts, B2 SINE induction occurs during MHV68 lytic infection of
primary bone marrow-derived macrophages and during lytic reactivation of B cells,
both physiologically relevant cell types for the virus. Induction is cell autonomous,
occurs independently of innate immune signaling components, and does not involve
RNAPIII regulation by the master repressor Maf1. Instead, a screen of MHV68 open
reading frames (ORFs) revealed a role for the conserved herpesvirus protein kinase
ORF36 in B2 SINE induction. Expression of wild-type (WT) ORF36 but not a kinase dead
mutant was sufficient to activate B2 SINEs, and an MHV68 mutant lacking ORF36
displayed reduced SINE induction potential. ORF36 inhibits histone deacetylases 1 and
2 (33, 34), and we show that chromatin derepression contributes to B2 activation.
Collectively, our results reveal a new function for the herpesviral protein kinase and
provide insight into the mechanism of SINE activation during viral infection.
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RESULTS
MHV68 infection induces B2 SINEs in physiologically relevant antigen-

presenting cell types. Our previous work established that MHV68 infection of murine
fibroblasts results in robust activation of B2 SINEs (21). While fibroblasts are commonly
used to study MHV68 infection in vitro, two of the most physiologically relevant cell
types for the in vivo MHV68 life cycle and establishment of lifelong latency are B cells
and macrophages (35). We therefore sought to determine whether B2 SINE induction
is also a feature of MHV68 infection in these key cell types.

Although B cells are the main viral reservoir in vivo, they are highly resistant to de
novo MHV68 infection in cell culture (36). The only latently infected B cell line isolated
from an MHV68-infected mouse tumor, S11, reactivates to very low frequency, making
study of lytic cell populations impractical (37). However, a B cell line has been
generated (A20-HE-RIT) that is latently infected with MHV68 and contains a doxycycline
(dox)-inducible version of the viral lytic transcriptional activator gene RTA. Treatment of
these cells with Dox and phorbol ester (PMA) enables the switch from latency to lytic
replication in approximately 80% of the cells (38, 39). Induction of the lytic cycle by dox
and PMA treatment of the A20-HE-RIT cells caused a marked increase in B2 SINE levels
as measured by primer extension, with levels peaking at 24 to 32 h poststimulation (Fig.
1A). Importantly, B2 RNA induction was not seen in the uninfected A20 parental cells
subjected to the same dox and PMA treatment. Furthermore, the induction observed in
infected cells was specific to B2 SINEs, as levels of another RNAPIII transcript, 7SK,
remained unchanged. Further, reverse transcriptase quantitative PCR (RT-qPCR) analysis

FIG 1 B2 SINE transcription is upregulated in B cells, primary macrophages, and NIH 3T3 cells upon MHV68 infection. (A) MHV68 latently infected A20-HE-RIT
B cells, or parental uninfected A20 B cells, were treated with doxycycline (dox) and phorbol ester (PMA) to induce lytic reactivation. Total RNA was isolated at
the indicated time points postreactivation and subjected to primer extension for B2 SINEs or 7SK for loading. (B) RT-qPCR was performed to detect the indicated
RNAPIII transcript levels using RNA extracted from mock or reactivated A20-HE-RITs. (C) A20-HE-RITs were reactivated in the presence or absence of
phosphonoacetic acid (PAA) to block viral DNA replication, and total RNA was subjected to primer extension as described above. (D) BMDMs or (E) NIH 3T3
were either mock infected or infected with MHV68 for the indicated time periods, whereupon total RNA was isolated and subjected to primer extension as
described above.
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confirms that 7SK plus several other RNAPIII transcripts are not significantly elevated
upon reactivation of A20-HE-RIT (Fig. 1B), similar to our previous findings during MHV68
lytic infection (21). Additionally, phosphonoacetic acid (PAA) treatment to block viral
DNA replication did not prevent B2 SINE induction during reactivation in A20-HE-RIT
cells, although the levels were modestly reduced (Fig. 1C). Thus, upon lytic reactivation
of latently infected B cells, B2 SINEs are induced early in the viral lytic cycle and
continue to accumulate as infection progresses.

We next examined the potential for B2 SINE induction upon MHV68 infection of
primary bone marrow-derived macrophages (BMDMs). Unlike fibroblasts, which are
highly susceptible to MHV68, the highest level of infection we achieved in WT BMDMs
was �20%, which occurred with a multiplicity of infection (MOI) of 20 and did not
increase upon addition of more virus (A. M. Schaller, unpublished observation). Despite
the lower infection efficiency, primer extension reactions demonstrated that in MHV68-
infected primary BMDMs, B2 SINE induction began at 30 h postinfection (hpi) and
reached their highest relative levels by 40 to 48 hpi (Fig. 1D). These induction kinetics
were slower than what we observed in NIH 3T3 cells (Fig. 1E), likely due to overall
slower replication kinetics of MHV68 in the BMDMs, as previously documented (40). In
summary, B2 SINE RNA induction occurs during lytic MHV68 infection of multiple
primary and immortalized cell types.

B2 SINE RNAs are not induced in uninfected cells by paracrine signaling. We
were struck by the robust B2 upregulation in primary BMDMs, given that at most 20%
of these cells were infected by MHV68. We therefore considered the possibility that
infected cells produce paracrine signals that cause B2 upregulation in neighboring
uninfected cells as well. We first tested this possibility using 3T3 cells, as their suscep-
tibility to infection should yield a higher concentration of relevant paracrine signaling
molecules. We performed a supernatant transfer assay, in which uninfected cells were
incubated for 1 h or 24 h with cell supernatants from infected NIH 3T3 cells, either in
crude form or after 0.1 �m filtration to remove viral particles. B2 SINE levels were then
measured 24 h posttransfer using primer extension. We observed no B2 SINE induction
in cells incubated in filtered supernatants, suggesting that paracrine signals derived
from infected 3T3 cells are not sufficient to stimulate B2 induction in uninfected cells.
In contrast, there was robust B2 SINE induction in cells incubated with crude superna-
tants, as expected since these supernatants contain MHV68 virions to initiate a de novo
infection (Fig. 2A). This experiment was repeated in BMDMs, where filtered or crude
supernatants were taken from infected 3T3 cells and incubated with plated BMDMs for
1 h or 24 h before removal. BMDMs were harvested 48 h after the beginning of
incubation with 3T3 supernatants. These data were identical to those observed with
3T3s, in which paracrine signals contained within filtered supernatant were insufficient
for B2 induction (Fig. 2B). While it is theoretically possible that some filterable compo-
nent, and not viral infection, could be responsible for B2 SINE induction, these results
strongly suggest that paracrine or cell-to-cell signaling through the supernatant is not
sufficient to induce this phenotype.

FIG 2 Paracrine signaling does not induce B2 SINE induction. (A) NIH 3T3 cells or (B) primary BMDMs were
incubated with supernatants harvested from 24-h-infected NIH 3T3 cells, either in crude form or filtered to remove
whole virus, for the indicated time period. Total RNA was isolated from cells at 24 h or 48 h postincubation and
subjected to primer extension for B2 SINEs or 7SK, respectively.
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B2 SINE induction is RNAPIII-dependent but does not involve the RNAPIII
regulator Maf1. We previously showed that treatment of 3T3 cells with an RNAPIII

inhibitor or B2-directed antisense oligonucleotides (ASOs) reduced the B2 RNA levels
upon MHV68 infection, strongly suggesting that RNAPIII activity was required for their
induction (21). However, given that small molecule inhibitors can have off-target effects
and B2 ASOs will also target mRNAs containing embedded SINE elements, we sought
to independently validate that the B2 SINE transcriptional induction is RNAPIII-
dependent. We chose the strategy of depleting Brf1, a critical component of the TFIIIB
transcription factor complex needed for RNAPIII transcription of type II (e.g., SINE)
promoters using small interfering RNA (siRNA)-mediated knockdown (8). Knockdown of
Brf1 was robust through 48 h posttransfection (Fig. 3A). In both BMDMs (Fig. 3B) and
3T3 cells (Fig. 3C), depletion of Brf1 completely abrogated B2 expression as measured
by primer extension throughout the time course of infection. Notably, the levels of 7SK
were not affected by Brf1 knockdown, as this RNAPIII transcript has a type III promoter
that does not require Brf1 (41). Thus, these results confirm that RNAPIII is required for
MHV68-induced B2 SINE activation.

We next considered the possibility that MHV68 infection alters the regulation of
RNAPIII to increase its activity on B2 promoters. A master regulator of RNAPIII is Maf1,
which acts by binding free RNAPIII at its clamp domain, thereby impairing RNAPIII
binding to the TFIIIB-promoter complex and preventing RNAPIII transcription initiation
(9, 42). To test the hypothesis that release of Maf1-mediated repression of RNAPIII
transcription is responsible for B2 SINE induction, we derived primary BMDMs from
Maf1–/– mice (43). Surprisingly, we observed no increase in B2 SINE RNA in uninfected
Maf1–/– BMDMs compared to WT BMDMs, suggesting that Maf1 is not required for the
normal silencing of B2 loci (Fig. 3D). We did observe somewhat more of an increase in
B2 levels at 24 hpi with MHV68 in the Maf1–/– cells relative to WT cells, although this
difference was not sustained at 48 hpi (Fig. 3D). We therefore conclude that the primary
mechanism of B2 induction by MHV68 is not through interference with the RNAPIII
repressor Maf1.

B2 SINE induction is independent of canonical innate immune signaling path-
ways. Due to their activation during herpesvirus infection and broadly acting signaling
cascades, we considered that innate immune signaling may be involved upstream of B2
SINE induction. Pattern recognition receptors, namely, the toll-like receptors 2, 3, 7, and
9, RIG-I-like receptors, and AIM2, can become activated during lytic herpesvirus infec-
tion (44–47). To examine the possible upstream involvement of infection-induced
innate immune signaling in the induction of B2 SINE transcription, we quantified B2
SINE levels in primary BMDMs derived from WT B6 mice versus mice lacking several
canonical innate immune signaling pathways. These included mutants in Toll-like
receptor signaling (MyD88/TRIF–/–), cytoplasmic RNA recognition signaling (MAVS–/–), or
type I interferon (IFN) receptor-mediated signaling through the type I IFN receptor
(IFNAR–/–) (Fig. 4A), as well as cGAS/STING-mediated DNA sensing using the golden
ticket (gt/gt) mutant (48), which contains a missense mutation in exon 6 of the
mouse STING gene, rendering STING inactive (Fig. 4B). In each case, primer exten-
sion experiments showed equivalent or greater B2 SINE RNA induction upon
infection of the mutant BMDMs compared to the WT BMDMs. Thus, none of these
innate immune components is individually required for SINE activation during
MHV68 infection.

To control for the possibility that multiple innate immune sensors could be activated
in a redundant manner to induce B2 SINEs, we also tested primary BMDMs derived from
mice lacking the downstream transcription factors interferon-regulatory factor 3 (IRF3)
and interferon regulatory factor 7 (IRF7). All pattern recognition receptor signaling
pathways converge on IRF3 and IRF7, which activate transcription of interferon-
stimulated genes (ISGs) and inflammatory cytokines (49). In agreement with the
data from BMDMs lacking the upstream innate immune sensors, MHV68 infection
still caused robust B2 SINE induction in IRF3–/– and IRF3/7–/– BMDMs (Fig. 4C). Thus,
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innate immune signaling does not activate B2 SINE transcription during MHV68
infection.

We noted that the infection-induced B2 levels were even more pronounced in each
of the single and double knockout BMDMs than in WT cells (Fig. 4A to C). We
hypothesize that this is a result of increased MHV68 infection under conditions of
impaired immune restriction, as we noted that the knockout BMDMs routinely achieved
higher MHV68 infection rates (as measured by green fluorescent protein [GFP] positiv-
ity) than WT BMDMs (Schaller, unpublished).

FIG 3 B2 SINE upregulation is dependent on RNAPIII but independent of the RNAPIII master regulator Maf1. (A)
BMDMs were transfected with the indicated concentrations of either control or Brf1 siRNA pools and harvested 24
to 48 h later. Then, 30 �g of total protein lysates was resolved by SDS-PAGE and Western blotting with antibodies
against Brf1 or GAPDH (as a loading control). (B) Total RNA was harvested from mock- or MHV68-infected BMDMs
and NIH 3T3 fibroblasts following control or Brf1 siRNA treatment at the indicated time points. Total RNA was
subjected to primer extension using primers for B2 SINEs or 7SK (as a control). (C) WT or (D) Maf1–/– BMDMs were
mock infected or infected with MHV68 for the indicated times, whereupon total RNA was harvested and subjected
to primer extension as described in panel B.
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The conserved herpesvirus kinase ORF36 is sufficient to induce B2 SINE tran-
scriptional upregulation. To search for viral factors involved in B2 SINE induction, we
obtained and resequenced a partial MHV68 open reading frame (ORF) library previously
generated by Ren Sun, which contained 47 full-length MHV68 ORF plasmids (50) (Table
1). The ORFs were first screened by cotransfection of 3T3 cells with 3 to 5 plasmids that
were grouped based on similar temporal class and/or proposed or known function (Fig.
5A; Table 1) (51, 52). Only the group that contained ORFs 33, 35, and 36 showed B2 SINE
induction above that of the control GFP-expressing plasmid as measured by primer
extension (Fig. 5B). We then tested each of these ORFs individually for the ability to
induce B2 SINEs, revealing that only MHV68 ORF36 expression was sufficient to
upregulate B2 SINEs both as an untagged construct as well as with an N-terminal
FLAG-tag (Fig. 5B).

MHV68 ORF36 is a conserved herpesvirus serine/threonine kinase with a variety of
reported kinase-dependent and -independent roles relating to the DNA damage re-
sponse, inhibition of histone deacetylation, and inhibiting IRF3-driven ISG production
(33, 34, 53–55). To determine whether ORF36 kinase activity was required for B2 SINE
upregulation, we compared the activity of WT ORF36 to an ORF36 kinase-null mutant
(K107Q) (55). Primer extension of RNA from transfected 3T3 cells showed that only WT
ORF36 but not K107Q induced B2 SINEs (Fig. 5C). To determine the contribution of
ORF36 toward B2 induction in the context of infection, we obtained versions of MHV68
either lacking ORF36 (36S) or containing a kinase-null version of ORF36 (36KN) (54).
Notably, infection of primary BMDMs with these viruses revealed a reduction in

FIG 4 B2 SINE induction occurs independently of innate immune signaling. (A to C) WT or the indicated innate
immune factor knockout BMDMs were mock or MHV68 infected for 24 to 48 h. Total RNA was then harvested and
subjected to primer extension using primers for B2 SINEs or 7SK (as a control).
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MHV68-induced B2 SINE RNA upon loss or kinase inactivation of ORF36 compared to
infection with the repaired WT virus (Fig. 5D). We observed similar defects in B2
induction upon infection of 3T3 cells with 36S and KN viruses compared to WT, across
a range of MOI (Fig. 5E). The fact that some residual B2 induction remained in BMDM

TABLE 1 MHV68 ORFs tested in screena

aThe ORFs tested, their kinetic class, and their proposed function are listed. ORFs were grouped (last column) based on
similarities of kinetic class and function.
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and 3T3 cells infected with the ORF36 mutant viruses indicates that other viral factors
also contribute to SINE induction. However, ORF36 expression is sufficient to activate B2
SINEs when expressed alone and is required for WT levels of B2 SINE induction in the
context of MHV68 infection.

Induction of B2 SINE transcription is conserved among ORF36 CHPK homologs.
ORF36 homologs are found in all subfamilies of herpesviruses, where they are collec-
tively referred to as the conserved herpesvirus protein kinases (CHPKs). Several exam-
ples exist of shared CHPK functions and shared substrate specificity (54, 56, 57). We
therefore examined whether other CHPKs were able to induce B2 SINE RNA. We

FIG 5 The MHV68 kinase ORF36 induces B2 SINE transcription. (A) Schematic representing the method for testing
the MHV68 ORF library. (B) NIH 3T3 cells were transfected with plasmid(s) containing the indicated ORF(s) or a GFP
control for 24 h, whereupon total RNA was extracted and subjected to primer extension using primers for B2 SINEs
or 7SK (as a control). (C) NIH 3T3 cells were transfected with plasmids expressing either wild-type (WT) ORF36 or
a kinase-null mutant (K107Q) for 24 h, and then total RNA was isolated and subjected to primer extension as
described above. (D) BMDMs were infected with WT MHV68, kinase-null (KN), or ORF36 stop (S) virus. Total RNA was
isolated at 48 hpi and subjected to primer extension as described in panel B. (E) NIH 3T3 cells were infected with
WT MHV68, KN, or S virus at an MOI of 5. At 24 hpi, total RNA was isolated and subjected to primer extension as
described in panel B.
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transfected NIH 3T3 cells with plasmids expressing HA- or FLAG-tagged CHPKs from
KSHV (ORF36), varicella zoster virus (VZV) (ORF47), human cytomegalovirus (HCMV)
(UL97), EBV (BGLF4), and MHV68 (ORF36) and measured B2 SINE RNA using primer
extension (Fig. 6A). MHV68 ORF36 produced the most robust induction, followed by the
other gammaherpesvirus CHPKs, KSHV ORF36, and EBV BGLF4. The alpha- and beta-
herpesvirus protein kinases, VZV ORF47 and HCMV UL97, induced B2 SINEs to a minimal
degree, although they were expressed to similar (albeit low) levels as MHV68 ORF36
(Fig. 6B). Attempts at optimizing transfection conditions to achieve equivalent CHPK
expression among homologs were unsuccessful, likely due to inherent properties of the
expressed proteins in NIH 3T3s. However, these data suggest that B2 SINE induction is
conserved among the CHPKs, with MHV68 ORF36 being highly potent for inducing B2
expression.

Derepression of the chromatin landscape allows for B2 SINE induction. Previous
studies of features linked to SINE repression in uninfected cells indicated the impor-
tance of the repressive histone H3 lysine 9 tri-methylation (H3K9me3) mark and, to a
lesser degree, DNA methylation at CpG sites (11, 12, 58, 59). These marks are deposited
and maintained by the histone methyltransferases SU(VAR)3-9 and the DNMT family of
DNA methyltransferases, respectively. Furthermore, ORF36 has been shown to inhibit
histone deacetylases 1 and 2 (HDACs 1/2) (33), although whether HDACs are involved
in repression of SINE loci is unknown.

To test the role of each of these factors in B2 induction, we treated NIH 3T3 cells with
inhibitors of HDACs 1/2 (ACY-957), DNMTs (5-azacytidine), and SU(VAR)3-9 (chaetocin)
or a cocktail composed of ACY-957 and chaetocin together (Fig. 7A). We observed
induction of B2 SINEs following treatment with ACY-957 and chaetocin and an additive
effect when using both inhibitors together (Fig. 7A, lane 5). Treatment of cells with
5-azacytidine yielded no increase in levels of B2 RNA, in agreement with previous work
(11).

Given that the strongest effects on B2 induction were observed upon inhibition of
histone methyltransferases combined with HDAC inhibition, we next tested whether
treatment with these inhibitors during infection was sufficient to rescue B2 levels in
ORF36 KN and S infection to ORF36 WT infection levels. We observed that, in the
context of infection, treatment with ACY-957 and chaetocin restored the levels of B2
ncRNA in the ORF36 S- and KN-infected cells to those observed during WT MHV68
infection (Fig. 7B), showing that chromatin derepression induced B2 ncRNA accumu-
lation in an additive manner. Taken together, these data show that keeping an actively
repressed chromatin state, primarily through maintenance of H3K9me3, is important
for preventing constitutive B2 SINE induction.

FIG 6 Functional conservation of B2 SINE upregulation by several MHV68 ORF36 homologs. NIH 3T3 cells were
transfected with plasmids containing FLAG-tagged MHV68 ORF36 or the indicated HA-tagged ORF36 homolog
from Kaposi’s sarcoma-associated herpesvirus (KSHV ORF36), Epstein-Barr virus (EBV BGLF4), varicella zoster virus
(VZV ORF47), or human cytomegalovirus (HCMV UL97). These cells were then harvested for total RNA for B2 and
7SK primer extension (A) or protein lysates, which were analyzed with Western blotting with antibodies against HA
and FLAG, or GAPDH as a loading control (B). The dashed line indicates where an irrelevant lane was removed from
the image.
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DISCUSSION

A growing body of literature indicates that RNAPIII transcripts are upregulated in
herpesvirus-infected cells and can serve as substrates for innate immune recognition,
although mechanisms underlying their induction remain largely unknown (23, 24, 60,
61). The most robustly induced class of such transcripts in MHV68-infected fibroblasts
are the B2 SINE ncRNAs, whose transcription becomes activated across tens of thou-
sands of loci (22). Here, we show that B2 SINEs are also strongly induced in an
RNAPIII-dependent manner in reactivated B cells and primary bone marrow-derived
macrophages, confirming that B2 activation is a prominent feature of MHV68 infection
in physiologically relevant cell types. Induction of B2 SINEs occurs in a cell-autonomous
manner, and they are not activated in uninfected cells via paracrine signaling. Further-
more, our data suggest that B2 induction is not a downstream product of antiviral
signaling upon MHV68 infection, nor does it involve Maf1, a key negative regulator of
RNAPIII activity. Instead, we link B2 activation to the conserved herpesviral serine/
threonine protein kinase ORF36, which is sufficient to activate B2 RNA on its own and
contributes to robust B2 accumulation during MHV68 infection. We hypothesize that
changes in chromatin modification contribute to ORF36-mediated B2 activation and
that this activity is at least partially conserved in other herpesviral protein kinase
homologs. Altogether, ORF36-dependent B2 expression benefits the virus, as B2 RNAs
help promote viral gene expression and replication (21).

Several immune sensing pathways can become activated during lytic herpesvirus
infection, and B2 induction in uninfected cells has been linked to various types of cell
stress. TLRs 2, 3, and 9, as well as the DNA-sensing AIM-2-like receptor family, the
MAVS-dependent RNA-recognition receptors Mda5 and RIG-I, and the type I interferon
signaling pathway have all been implicated in the sensing of herpesviral infection (45,

FIG 7 Inhibitors of chromatin repression cause B2 SINE upregulation. (A) NIH 3T3 cells were treated with
the indicated inhibitor(s) for 24 h, whereupon total RNA was isolated and subjected to primer extension
for B2 SINEs or 7SK. (B) NIH 3T3 cells were subjected to pretreatment with DMSO or the indicated
inhibitors for 1 h prior to infection with MHV68 WT, KN, or S virus for 24 h, whereupon total RNA was
isolated and subjected to primer extension as described in panel A.
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47, 61–63). However, our data from a variety of pattern recognition receptor and
pathway knockout BMDMs indicate that engagement of these innate immune signaling
components is not the mechanism by which MHV68 infection activates B2 SINEs.
Indeed, B2 induction is even more robust in these infected knockout cells compared to
WT BMDMs, likely reflecting enhanced replication of the virus in the absence of intact
antiviral signaling. The innate immune independence of B2 activation is in agreement
with the timing of B2 induction, which initiates with delayed early kinetics and
continually increases late in infection.

RNAPIII transcription is broadly impacted by Maf1, which binds and negatively
regulates polymerase activity (9). Thus, if B2 SINE induction were due to inactivation of
Maf1, then we anticipated that Maf1–/– cells would have high baseline levels of B2
SINE RNA that would not further increase upon MHV68 infection. However, we did
not observe any increase in B2 SINE levels in mock-infected Maf1–/– cells, and
MHV68 infection of these cells resulted in B2 SINE activation that was comparable
to that in WT cells. These findings indicate that regulation of Maf1 does not
influence MHV68-mediated B2 SINE activation. Consistent with this, a recent chromatin
immunoprecipitation-sequencing study of RNAPIII occupancy in wild-type mouse liver
found relatively few B2 SINEs and identified only �30 of these elements with increased
RNAPIII occupancy in Maf1–/– mice (64). We did observe a slight increase in B2 SINE
levels at 24 hpi in Maf1–/– compared to WT cells, suggesting quicker RNAPIII transcrip-
tion kinetics due to broad loss of Maf1-mediated repression (Fig. 3D).

A partial MHV68 ORF library screen revealed ORF36 to be a robust inducer of B2 SINE
transcription. ORF36 is an early transcript (51, 52), which is consistent with the kinetics
of B2 induction and with our current and prior observations that inhibition of viral DNA
replication and late gene expression does not block B2 activation (21). Like other
CHPKs, ORF36 displays homology to the host-encoded cyclin-dependent kinases but is
thought to have broader substrate specificity (57). Indeed, it has been reported to
phosphorylate many targets, including the retinoblastoma protein, H2AX, and lamin
A/C (40, 56). Additionally, ORF36 has kinase-independent functions such as inhibition of
HDACs 1/2 (34) and IRF-3 (55), both of which are beneficial for productive infection.
Given our results showing that pharmacological inhibition of HDACs 1/2 and
SU(VAR)3-9 stimulated B2 induction, we favor the hypothesis that ORF36 activities
related to chromatin remodeling underlie its B2 induction phenotype. This would be in
line with previous work in uninfected cells demonstrating that DNA CpG methylation
and histone H3 trimethylation (H3K9me3) contribute to transcriptional repression of
SINE loci (11, 12, 58, 59). The observation that the ORF36 kinase-null viral mutant was
as defective as the ORF36 stop mutant for B2 induction indicates that while ORF36
modulation of HDACs 1/2 may contribute to such chromatin remodeling, this kinase-
independent function of ORF36 is not the primary driver of B2 induction during
infection. Instead, it may facilitate sustained B2 activation following a kinase-dependent
initial activation event.

Whether ORF36 impacts SU(VAR)3-9 methyltransferases is unknown, although
phospho-proteomics analysis of the EBV CHPK, BGLF4, suggests that SU(VAR)3-9h2 is
phosphorylated in a BGLF4-dependent manner (65). An intriguing possibility is that
ORF36 inhibits SU(VAR)3-9 function, through either direct phosphorylation of
SU(VAR)3-9 or manipulation of an upstream regulator such as its repressor DBC1 (66).
Additionally, recruitment of heterochromatin protein 1 (HP1) to H3K9me3 marks is
dependent on HDAC activity (67), providing another link between these chromatin
regulatory factors. Future experiments will be geared toward exploring epigenetic
alterations to the host genome during MHV68 infection that could influence RNAPIII
transcription.

The viral protein kinases are emerging as important players in gammaherpesvirus-
associated lymphomagenesis, and an intriguing possibility is that its activation of Pol III
retrotransposons—which are known to cause insertional mutagenesis (68–70)—may
contribute to this phenotype. Indeed, prolonged expression of the ORF36 homolog in
EBV (BGLF4) can contribute to genome instability leading to tumor formation, which
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has been linked to its phosphorylation of lamin A/C and topoisomerase-II (71, 72). KSHV
ORF36 also displays functions associated with oncogenesis, including functional mim-
icry of the cellular ribosomal protein S6 kinase �-1 (S6KB1), which leads to enhanced
protein synthesis, endothelial capillary tubule formation, and anchorage-independent
growth (73). Notably, a recent study from the Damania lab showed that transgenic mice
expressing KSHV ORF36 display increased B cell activation and develop high-grade B
cell lymphomas that share many features of primary effusion lymphoma (74). In this
regard, it is notable that among the vPK homologs, EBV BGLF4 and KSHV ORF36
showed the highest degree of B2 activation. The extent to which Pol III activation
contributes to these oncogenic phenotypes, as well as whether MHV68 ORF36 also
contributes to lymphomagenesis are important questions for the future.

MHV68 viral mutants lacking ORF36 or expressing a kinase-null version of the
protein displayed a partial reduction in B2 RNA accumulation relative to WT virus. These
results suggest that while ORF36 contributes to B2 induction during infection, one or
more other viral activities may be involved. Our ORF screen encompassed a significant
percentage of the annotated MHV68 genome (75); however, it should be noted that
recent work from O’Grady et al. (76) shows pervasive alternate isoform usage overlap-
ping ORF isoforms, suggesting that MHV68 encodes a more diverse proteome than
previously anticipated. One or more of these untested proteins may also contribute to
B2 induction, either via independent mechanisms or in cooperation with ORF36. Other
MHV68-encoded ORFs involved in B2 SINE transcription and stabilization remain an
open area of investigation.

In summary, our results provide the first insights into how gammaherpesvirus
infection induces SINE retrotransposons and identify a novel activity of the ORF36
protein kinase. Our work supports a model in which ORF36 functions to inhibit proteins
involved in the maintenance of a repressive chromatin landscape. This may occur
through both kinase-dependent and kinase-independent mechanisms, resulting in
derepression of B2 SINE loci. How these activities selectively impact certain RNAPIII loci
remains a key open question. Indeed, ongoing work to define how SINEs and other
RNAPIII transcripts are activated during infection, as well as noncanonical functions of
these ncRNAs, should provide insight into the emerging field of retrotransposon-linked
cell signaling. Given the breadth of DNA viruses that activate these hyperabundant loci,
viruses will continue to serve as unique tools to dissect the regulation of ncRNAs, as
well as the mechanisms by which they influence the outcome of infection.

MATERIALS AND METHODS
Cells. NIH 3T3 mouse fibroblasts were obtained from the UC Berkeley Cell Culture Facility and

maintained in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) with 10% fetal calf serum (FBS;
Seradigm). A20 B cells were maintained in RPMI (Gibco), 10% fetal bovine serum (FBS; VWR), 2 mM
L-glutamin, 100 U/ml penicillin,100 mg/ml streptomycin, and 50 mM �-mercaptoethanol (BME). A20-HE-
RIT cell lines (kindly provided by Laurie Krug) (39) were maintained under the same conditions as A20
cells, with the addition of 300 �g/ml hygromycin B, 300 �g/ml G418 and 2 �g/ml puromycin. To
reactivate A20-HE-RIT, cells were cultured in medium without antibiotic selection for 24 h and then
seeded at a cell density of 1e6 cells/ml in the presence of 5 �g/ml doxycycline and 20 ng/�l phorbol
myristate acetate (PMA) for the indicated time. To block viral DNA replication, PAA was used at a
concentration of 200 �g/ml and was added at the start of reactivation. Bone marrow-derived macro-
phages (BMDMs) containing knockouts for innate immune pathway components (48, 77–79) were kindly
provided by the lab of Gregory Barton (UC Berkeley, Department of Immunology). Wild-type and Maf1
knockout BMDMs were differentiated as follows: femurs and tibias from C57BL/6J (B6) mice (43) aged 3
to 6 months were flushed with bone marrow medium plus antibiotics (BMM�A; high glucose
DMEM � 10% FBS, � 10% MCSF � 1% PenStrep) using a 3-ml syringe with attached 23-gauge needle.
Cell-containing medium was filtered through a 70-�M filter to remove debris. Cells were pelleted at
280 � g in an Allegra X-15R Beckman Coulter centrifuge for 5 minutes. Supernatant was removed by
aspiration, and cells resuspended in BMM�A. Cells were counted using a hemocytometer and plated in
non-tissue culture (TC)-treated 15-cm petri dishes (ref. no. 351058; Falcon) at a concentration of 10e6
cells/25 ml BMM�A/plate. On day 3 of differentiation, 5 ml BMM�A was added to each plate to feed
cells. On day 7 of differentiation, BMM�A was aspirated and replaced with 10 ml cold Dulbecco’s
phosphate-buffered saline (DPBS; Invitrogen) per plate and placed at 4°C for 10 min. Cells were then
lightly scraped from each plate and collected, pelleted as previously mentioned, and resuspended in
bone marrow medium without antibiotics (BMM) containing 10% DMSO at a concentration of 10e6/ml.
Then, 1.5-ml CryoTube vials containing 1 ml/10e6 BMDMs were frozen at – 80°C for 24 h before being
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stored in liquid nitrogen for the duration. Subsequently, thawed vials of BMDMs were maintained in BMM
except during infections. Experiments involving mice were performed under a protocol approved by the
Institutional Animal Care and Use Committee (IACUC) of the Albert Einstein College of Medicine.

Transfections. Transfection of BMDMs with Brf1 or control siRNA was completed as follows: BMDM
cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) with 10% fetal calf
serum (FBS; Seradigm). Prior to siRNA transfection, BMDMs were grown for 3 days in 15-cm TC-treated
plates to 90% confluence. Cells were removed and washed in DPBS twice by spinning at 475 � g for 5
minutes each time. Transfection of siRNA was done using the Neon transfection system (Thermo Fisher)
as follows: for each condition, 2e6 cells were resuspended in buffer R at a concentration of 1e6
cells/100 �l. To this, 200 nM (assuming a final culture volume of 2 ml medium) siRNA was added from 100
�M stock or either control (ON-TARGETplus nontargeting control pool; Dharmacon) or Brf1 siRNA
(SMARTpool; ON-TARGETplus mouse Brf1 siRNA; Dharmacon). Then, 100 �l Neon transfection system tips
were used to transfect siRNA into cells as follows: parameters set for BMDMs were 1,680/20/1 (pulse/
length/width). Cells were then quickly removed to 2 ml total medium and plated at 2e6 cells/plate in
60-mm TC-treated plates, before being placed at 37°C to incubate. Transfection of NIH 3T3 cells with
MHV68 ORF library plasmids and ORF36 WT and mutant plasmids was completed as follows: NIH 3T3s
were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) with 10% fetal calf serum
(FBS; Seradigm). Prior to transfection, cells were maintained at parameters suggested in the PolyJet in
vitro DNA transfection reagent protocol (http://signagen.com/DataSheet/SL100688.pdf). Guidelines for
the advanced protocol for transfecting hard-to-transfect mammalian cells was followed strictly. Briefly,
2.7 � 106 cells were transfected with 5 �g of plasmid DNA for each sample. In cases of multiple ORF
transfections, total plasmid DNA levels were not to exceed 25 �g.

Plasmids and cloning. MHV68 ORF library plasmids were generously provided by the lab of Ren Sun
(University of California Los Angeles), and their construction was previously described (50). For genera-
tion of the ORF36 kinase-null mutant, the K107Q mutation was introduced using QuikChange PCR with
the following primers: 5=-GTGCTGTCAATTTTGGGATATACTGTATGCAGAGCGTGTCATCTGAT-3= and 5=-AT
CAGATGACACGCTCTGCATACAGTATATCCCAAAATTGACAGCAC-3=. Plasmids for conserved herpesvirus
protein kinase homologs of ORF36 were purchased through Addgene from the laboratory of Robert
Kalejta (https://www.addgene.org/Robert_Kalejta/) (56).

Virus preparation and infections. MHV68 containing a stop mutation or kinase-null mutation in
ORF36 as well as the corresponding mutant rescue virus were generously provided by Vera Tarakanova
(Medical College of Wisconsin) (54). MHV68 was amplified in NIH 3T12 fibroblast cells, and the viral 50%
tissue culture infective dose (TCID50) was measured on NIH 3T3 fibroblasts by limiting dilution. NIH 3T3
fibroblasts were infected at the indicated multiplicity of infection (MOI) by adding the required volume
of virus to cells in 1 ml total volume (for each well of a 6-well plate), 2 ml total volume (for 6-cm plates),
or 5 ml (for 10-cm plates). Infection was allowed to proceed for 45 min prior to removal of virus medium
and replacement with DMEM plus 10% FBS. BMDMs were infected with the minimal volume of MHV68
required to achieve maximum infection (20% to 30%), as determined by titration experiments with
GFP-marked MHV68 followed by flow cytometry for GFP. For infection of BMDMs, virus was added to cells
in serum-free DMEM for 4 h in non-TC-treated plates. Virus-containing medium was then aspirated and
replaced with macrophage medium without antibiotics.

RT-qPCR and primer extension. Total RNA was extracted from cells using TRIzol reagent (Invitro-
gen). For RT-qPCR analysis, RNA was treated with Turbo DNase (Ambion) and reverse transcribed with
avian myeloblastosis virus reverse transcriptase (AMV RT) (Promega) primed with random 9-mers.
RT-qPCR was performed with iTaq universal SYBR green Supermix (Bio-Rad) using the following primers:
(7SK_F: CCCCTGCTAGAACCTCCAAAC, 7SK_R: CACATGCAGCGCCTCATTT, U6_F: CGCTTCGGCAGCACATA
TAC, U6_R: AAAATATGGAACGCTTCACGA, 5S_F: TCTCGTCTGATCTCGGAAGC, 5S_R: AGCCTACAGCACCCG
GTATT, 7SL_F: ATCGGGTGTCCGCACTAAGTT, 7SL_R: CAGCACGGGAGTTTTGACCT). The fold change was
calculated using the ΔΔCT method. Primer extension was performed on 10 to 15 �g of total RNA using
a 5= fluorescein labeled oligo specific for B2 SINEs or 7SK. RNA was ethanol precipitated in 1 ml 100%
EtOH, washed in 70% ethyl alcohol (EtOH), and pelleted at 21,130 � g and 4°C for 10 min. Pellets were
resuspended in 9 �l annealing buffer (10 mM Tris-HCl, pH 7.5, 0.3 M KCl, 1 mM EDTA) containing 1 �l of
(10 pmol/�l) 5=-fluorescein labeled primer (B2 SINE: TACACTGTAGCTGTCTTCAGACA, 7SK: GAGCTTGTTT
GGAGGTTCT; Integrated DNA Technologies). Samples were heated briefly to 95°C for 2 min, followed by
annealing for 1 h at 55°C. Then, 40 �l of extension buffer (10 mM Tris-HCl, pH 8.8, 5 mM MgCl2, 5 mM DTT,
1 mM deoxynucleoside triphosphate [dNTP]), and 1 �l AMV reverse transcriptase (Promega) were added,
and extension was carried out for 1 h at 42°C. Samples were EtOH precipitated, and then pellets were
briefly air dried and resuspended in 20 �l 1� RNA loading dye (47.5% formamide, 0.01% SDS, 0.01%
bromophenol blue, 0.005% xylene cyanol, and 0.5 mM EDTA). Then, 10 �l of each sample was run on an
8% urea-PAGE gel for 1 h at 250 V. Gels were imaged on a Bio-Rad Chemidoc with fluoroscein imaging
capability.

Protein extraction and analysis. Cells were washed with cold DPBS once before being lysed with
RIPA lysis buffer (50 mM Tris HCl, 150 mM NaCl, 1.0% [vol/vol] NP-40, 0.5% [wt/vol] sodium deoxycholate,
1.0 mM EDTA, and 0.1% [wt/vol] SDS). Cell lysates were vortexed briefly, rotated at 4°C for 1 h, and then
spun at 18,000 � g in a tabletop centrifuge at 4°C for 12 min to remove debris.

For Western blot analyses, 30 �g of whole-cell lysate was resolved with 4 to 15% mini-PROTEAN TGX
gels (Bio-Rad). Transfers to polyvinylidene difluoride (PVDF) membranes were done with the Trans-Blot
Turbo transfer system (Bio-Rad). Blots were incubated in 5% milk/TBS plus 0.1% Tween 20 (TBST) to block,
followed by incubation with primary antibodies against FLAG (Sigma F1804, 1:1,000), Brf1 (Bethyl
a301-228a, 1:1,000), hemagglutinin (HA) (Sigma H9658, 1:1,000), TUBA1A (abcam ab729, 1:1,000), or
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GAPDH (glyceraldehyde-3-phosphate dehydrogenase) (Abcam ab8245, 1:1,000) in 5% milk/TBST. Washes
were carried out in TBST. Blots were then incubated with horseradish peroxidase (HRP)-conjugated
secondary antibodies (Southern Biotechnology, 1:5,000). Washed blots were incubated with Clarity
Western ECL substrate (Rio-Rad) for 5 min and visualized with a Bio-Rad ChemiDoc imager.

Inhibitor treatment. Cells were plated 12 h before inhibitor treatment to achieve 70% confluence
at time of treatment. ACY-957 (MedChemExpress HY-104008), 5-azacytidine (Sigma A2385), and chaeto-
cin (Cayman Chemicals 13156), were resuspended with DMSO prior to treatment. Inhibitors were diluted
to working concentrations in warmed DMEM plus 10% FBS before addition to cells. Pretreatment of cells
with inhibitor-containing medium preceded infection with MHV68 by 1 h. Upon removal of virus-
containing medium, inhibitor-containing medium was replaced onto cells.
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